

Mountain Plains States Consortium
WIC System Project

DETAILED TECHNICAL SPECIFICATIONS

DOCUMENT

Presented to:

Revision Date: Final – March 24, 2008

Prepared by

650 Wilson Lane, Suite 200

Mechanicsburg, PA 17055

717.691.5500

CO Contract #WIC0601052

CIBER Project #CODPH00201

Detailed Technical Specifications Document MPSC WIC Data System Project

2 Document Revisions Final – March 24, 2008

Products and company names mentioned herein may be the trademarks or registered

trademarks of their respective owners. Unmentioned brands or company names are

also respected with their own registered trademarks. Some content may be a direct

translation from their web sites.

Document Revisions

Revision Date Updated By Requested By Description of Revision

1/8/07 CIBER MPSC Revision Version

1/15/08 CIBER MPSC Final Version

3/24/08 CIBER MPSC Updated Final Version

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Table of Contents 3

Table of Contents

1 Introduction ... 6

2 Architectural Overview .. 7

2.1 Client Machine .. 8

2.2 Web Server ... 8

2.3 Database Server .. 9

3 System Architecture ... 10

3.1 Delivery Services ... 11

3.2 Business Services .. 11

3.3 Shared Services ... 12

3.4 Software Frameworks ... 12

3.5 Interface Integration Services .. 13

3.6 Data Integration Services .. 13

3.7 External Interfaces .. 13

3.8 Disconnected Operations ... 15

4 Detailed Design .. 16

4.1 User Interface .. 16

4.1.1 Design Strategy ..16
4.1.2 Objects and Actions ...18
4.1.3 Interface Design Rules ..19

4.2 Business .. 20
4.2.1 Design Strategy ..21
4.2.2 Objects and Actions ...21

4.3 Data Access .. 21

4.4 External Interfaces .. 22

4.4.1 Design Strategy ..22
4.4.2 Objects and Actions ...22

4.5 Reporting ... 23

4.5.1 Design Strategy ..24
4.5.2 Objects and Actions ...24

4.6 System Services .. 25

4.6.1 Security ..25
4.6.2 Cache ..29
4.6.3 Exception Handling ..31

4.7 Database ... 33
4.7.1 OLTP ...33
4.7.2 Audit ...33
4.7.3 Warehouse ...34
4.7.4 Reports ...35

Detailed Technical Specifications Document MPSC WIC Data System Project

4 Table of Contents Final – March 24, 2008

4.7.5 Synchronization ..35

5 System Deployment .. 36

5.1 Server .. 36

5.2 Client .. 36

5.2.1 Application Publishing Process ...37
5.2.2 Initial Application Install Process ...37
5.2.3 Daily Application Update Process ..37

6 Systemic Qualities ... 38

6.1 Performance ... 38

6.2 Scalability .. 39

6.3 Usability ... 39

7 Future Considerations .. 40

8 Dependencies .. 42

8.1 Tools ... 42

8.2 Technologies ... 43
8.2.1 Smart Client Application ...44
8.2.2 Database Server ...44
8.2.3 Web Server ..44

8.3 Infrastructure ... 45

8.3.1 Environments ..45
8.3.2 Hardware ...47
8.3.3 Network ..48

8.4 Disaster Recovery and Business Continuity ... 49

9 Standards .. 51

9.1 Coding Standards .. 51

9.1.1 Naming Guidelines ...51
9.1.2 Coding Guidelines ...58

9.2 Database Coding Standards .. 59

9.2.1 Coding Standards ...59
9.2.2 Guidelines ..63
9.2.3 Security ..67

10 Appendix A: Data Dictionary and Data Models 69

11 Appendix B: Class Diagrams ... 70

11.1 Base ... 70

11.2 Clinic Services .. 71

11.3 Finance .. 86

11.4 Food Management ... 88

11.5 Operations... 94

11.6 SA – Clinic Services... 105

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Table of Contents 5

11.7 SA – Operations ... 112

11.8 SA – Scheduler ... 115

11.9 SA – System Wide ... 117

11.10 SA – Vendor .. 125

11.11 Scheduler .. 127

11.12 Vendor Management ... 129

Detailed Technical Specifications Document MPSC WIC Data System Project

6 Introduction Final – March 24, 2008

1 Introduction

This document describes the architecture and technical design for the Mountain Plains

States Consortium (MPSC) system, including a description of the overall architectural

approach and the reasoning and motivation behind the decisions leading to the selected

architecture. Where applicable, this document also describes how the system has been

designed to evolve over time.

The architectural approach for the MPSC system is based on the Smart Client architecture

published and supported by Microsoft. The specification from Microsoft is based on a

Service-Oriented Architecture, in which individual systems are implemented as

interoperating sets of services, using common frameworks, standards, and practices.

The architectural solution will enable the MPSC system to become a participant system in

the overall enterprise application space across the states and will be classified as a “Tier II”

system. A Tier II system is defined as a software system targeted at a specific set of

business users, as opposed to being a Tier I service available to everyone, such as a Shared

Security Service. The design methodology sets out a software development process

focusing on the systemic qualities and early identification and mitigation of risk.

This document outlines the various parts of the architecture and then drills down into the

details on the design of those areas. Wherever applicable, there are references to APIs and

frameworks that must be considered transient at this point since this document will be

updated before the final delivery of the system to MPSC.

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Architectural Overview 7

2 Architectural Overview

The software architecture of a program or computing system is the structure or structures

of the system, which comprise software elements, the externally visible properties of those

elements, and the relationships among them. In addition, the software architecture work

products define interactions which take place between these components to realize a

business process.

The software architecture model below describes the overall design of the MPSC system in

terms of the software system, detailing the various application layers that make up the

design. The solution uses an n-tier approach for building the MPSC system, utilizing best

practices of software application partitioning in order to achieve the design and performance

goals of the system. This n-tier approach was specifically designed and tailored for the

MPSC project.

The n-tier architecture for the MPSC is further specialized using the framework provided by

the “Smart Client Architecture”. This is based on the premise of handling all major

processing and business steps on or as close to the client as possible. The diagram below

illustrates the logical architecture of a distributed Smart Client system.

Detailed Technical Specifications Document MPSC WIC Data System Project

8 Architectural Overview Final – March 24, 2008

2.1 Client Machine

The client machine contains the major part of the working application in compiled

executables, DLLs (Dynamic Link Libraries), and supporting files. In addition to the user

interface, the client machine also provides the following functions:

 Performs basic validation of data captured through user interface interaction.

 Applies business rules to the data captured through the user interfaces, which may

span data collected across multiple screens.

 Caches information to ensure minimal communication with the server, and hence,

optimal use of the network.

 Applies security to the various parts of the user interface.

The client for the system uses the Windows Forms interface, and hence, all controls used

during the development are native to the .NET framework. The guiding principles for the

development of the application for the client machine are:

 Develop controls based on well-defined component architecture.

 Minimize repeated code patterns in routine forms with frameworks such as:

o Data validation

o Data management

o Security

 Retrieve information from the server when required. In context of the user interface

for a connected system, this translates to fetching information for a specific “unit of

work” when requested.

 Compress the communication between the client and Web server to ensure optimal

use of network bandwidth.

The above discussion also applies to a disconnected client system where the communication

with the Web server happens in batch for synchronization.

2.2 Web Server

The Web server provides all communication interfaces back to the central database. The

Web server provides the following high level functions:

 Communication end-point for all interaction between client and server.

 Compression for all packets to and from the client.

The guiding principles for the design and development of the Web server are:

 Build interfaces based on specialization to ensure scalability.

 Ensure secure communications between client and server.

 Use abstraction to ensure that the contract between client and server can adapt to

changes in the actual implementation of the contract on the server.

The Web server provides a very specialized service within this architecture, specifically

facilitating communication between client and server. Using the right deployment and

configuration, this is also one of the key parts of the architecture that provides scalability to

the solution. This is detailed in the System Deployment section.

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Architectural Overview 9

2.3 Database Server

The database server provides the persistent data store for all data within the system. There

are multiple physical data stores (databases) within the MPSC system that are detailed later

in the document. The basic guiding principle for the On-Line Transaction Processing (OLTP)

database is to ensure that data is persisted and retrieved in the most expedient fashion

while maintaining referential integrity throughout a properly normalized logical data model.

Also discussed later is high-level database infrastructure related to availability, operational

continuity, scalability, and performance.

Detailed Technical Specifications Document MPSC WIC Data System Project

10 System Architecture Final – March 24, 2008

3 System Architecture

The following diagram shows the overall architecture. Sections are detailed below.

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 System Architecture 11

3.1 Delivery Services

Delivery services provide a consistent interface to the system for the users, regardless of

device type or user roles. Their general role is to coordinate users‟ requests through

accessing other services. Delivery services are accessed via the Internet or the intranet

using HTTP(S) (Hyper-Text Transfer Protocol, Secured) and XML (eXtensible Markup

Language).

Security Policy Application

These services access security services for both authentication and authorization of

user requests, primarily involving the security shared service.

Session Management

Session management services maintain user session information, such as security

roles, single sign on data, and other data that must be retained for a user session

between requests.

3.2 Business Services

MPSC business services contain the rules used to accomplish WIC business-related tasks.

These services are orchestrations of lower-level services, wherever possible, to maintain the

architectural flexibility. The services are deployed for internal and external access so that

both disconnected and connected clinic operations function using the same code base.

Business services provide basic functionality needed by almost all components across the

application. .NET Remoting provides efficient access to these internal services; however, for

ease of maintenance and consistency, these internal services use Windows Communication

Foundation (WCF) Services. The WCF services in connected mode are available with

wsHTTPBinding, whereas the data is transported over HTTPS and encoded in either text or

Message Transmission Optimization Mechanism (MTOM).

Clinic Services

Clinic services encapsulate all functionality necessary to bring new WIC families into

the program, as well as to re-certify existing participants. The service also includes

functionality for providing WIC benefits either through paper FIs or EBT cards

depending on the state‟s preference.

Scheduler

The scheduler is a set of services that allows users to manage appointments for WIC

families.

System Administration

These services enable the authorized user to modify data that is required for the

MPSC system to work properly. This service is split into 5 services – Clinic Services,

Scheduler, Vendor Management, Operations, and System-Wide services.

Finance

These services are used to provide support in the financial area for such things as

grant management and formula rebates.

Detailed Technical Specifications Document MPSC WIC Data System Project

12 System Architecture Final – March 24, 2008

Food Management

These services are used to define WIC approved foods, participant profiles, food

rules, and model food packages.

Vendor Management

These services are used to provide support in the authorization and management of

businesses that apply for and are authorized to participate in the state WIC program.

Operations Management

These services are used for the purpose of providing support in the operations area

for such things as inventory and staff support.

3.3 Shared Services

Shared services span functional areas (business services), providing standard

implementation of these aspects system-wide.

Security

The security services provide authentication and authorization capabilities to the

MPSC system. Security is role-based and roles are defined based on users‟

accessibility to business objects and/or tasks with respect to state, local agencies,

and clinics.

Reporting Services

Reporting services are used by the MPSC system architecture. They provide the

capability to access data for reporting. Reporting functionality uses the Microsoft

SQL Server Reporting Services (SSRS) toolset. Ad hoc reporting is available using

SQL Server Report Modeler, whereas the managed reports are designed using Report

Designer.

3.4 Software Frameworks

Frameworks are used throughout the MPSC system to provide a variety of software

functionality. The use of hardened, commercially-available frameworks enable developers

to focus on solving the business problems by implementing with existing, proven

frameworks and to avoid re-invention of infrastructure upon which application components

are built.

Enterprise Library

The Enterprise Library is a collection of application blocks that the MPSC

development team adopts to expedite development. The MPSC development team

uses the Caching Application Block, Exception Handling Application Block, Logging

Application Block, and Validation Application Block.

Smart Client Software Factory (SCSF)

MPSC system is designed using the SCSF framework where the components are

designed independently and loaded dynamically and integrated together at runtime

within a shell. MPSC system is designed and developed by applying use-case driven

strategy recommended by the SCSF.

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 System Architecture 13

3.5 Interface Integration Services

These services form a two-way communications path between the WIC environment and

external entities. Based on the requirements, either WCF services or XML Web services are

exposed to the external entities as the standard means of access. Note that some file

transfer interfaces are also provided as needed by this service grouping, though these are

minimized as much as possible.

WCF Services

This service is used wherever the data is transported between the MPSC system and

any .Net-based external component (e.g., Card Reader Interface System - CRIS).

File Transfer

Some external systems may require the transfer of files for the transmission of data.

This is most commonly done via File Transfer Protocol (FTP) but may also be done

through the use of common file shares if the external system has access to the same

domain as the MPSC system. While the file formats have been determined during

design, some of the implementation decisions for certain interfaces will be made

later in the project.

3.6 Data Integration Services

Persistent storage must be accessed and updated, whether these stores are relational

databases or legacy systems. The data integration services enable consistent access to

these data stores.

ADO.NET (ActiveX Data Objects)

This is the standard access method for .NET-based systems to interface with

relational databases. These services abstract the .NET calls, providing a consistent

code-level interface.

SQL Server Integration Services (SSIS)

These services are provided by Microsoft SQL Server 2005 for developing interfaces

to and from the database. The services are exposed as a set of native scripts and

plug-ins available with the product. The solution leverages these services for

creating extracts and database loads.

Logically, the integral parts of this system are described in the diagram in Section 3;

however, the overall application environment for the MPSC system is Microsoft.NET. The

framework provides these low-level services:

 Transaction Management

 Multi-threading

 Resource Pooling

3.7 External Interfaces

The table below lists examples of the interfaces external to the MPSC application with which

the application exchanges data. All interfaces are detailed in the DFDD.

Detailed Technical Specifications Document MPSC WIC Data System Project

14 System Architecture Final – March 24, 2008

External
Interface Data Description Format In/Out Frequency

Method /
How

Auditor Auditor‟s File Fixed

length

(ASCII)

Out As needed TBD

Auto-Dialer

(Utah Only)

Schedule data Fixed

length

(ASCII)

In/Out Daily File Share

CDC Pediatric Nutrition

Surveillance (PedNSS)

and Pregnancy Nutrition

Surveillance (PNSS)

data

Fixed

length

(ASCII)

Out PNSS =

Quarterly

PedNSS =

Monthly

Internet via

CDC‟s

Secure

Data

Network

EBT Host

(WESS)

Approved Foods, Hot

Cards, Pricing, and

Redemption data

Fixed

length

(ASCII)

In/Out Daily WCF –

encoded

text

Formula

Company

Formula Rebate File Fixed

length

(ASCII)

Out As needed TBD

FSMC Issuance, Vendor, and

Redemption data

Fixed

length

(ASCII)

In/Out Daily FTP

Other

States

Dual Participation data Fixed

length

(ASCII)

In/Out As needed TBD

PRAMS Pregnancy Risk

Assessment Monitoring

System (PRAMS) data

Fixed

length

(ASCII)

In/Out As needed FTP

USDA UPC

National

Database

UPC Product Information Fixed

length

(ASCII)

In/Out As needed Secure

connection

USDA-FNS PC2008 and TIP Report Fixed

length

(ASCII)

Out PC2008 =

Biennially

TIP =

Annually

FTP

USIIS

(Utah Only)

Immunization criteria

data

Fixed

length

(ASCII)

Out Monthly FTP

Vendor

Portal

(Utah Only)

Vendor Price Survey

Data

Fixed

length

(ASCII)

In/Out As needed TBD

The external interfaces are handled using SQL Server Integration services. The outputs for

the extracts are propagated to separate tables, which are then used to transmit information

to the various agencies.

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 System Architecture 15

3.8 Disconnected Operations

The WIC application supports both connected and disconnected modes of operation. The

disconnected mode provides access to key features of the system in clinics that do not have

access to the Internet. The Synchronization feature enables disconnected use by providing

agency-specific databases to designated computers, known as clinic servers. These servers

connect to the Internet each night to upload changes captured throughout the day and to

download an updated version of the database to be used the following day. The daily

synchronization process involves the following steps:

1. Updates from all clinic servers are submitted until a pre-specified time, usually after

peak online production hours. The updates are transmitted to the OLTP database as

individual data packets using the same Web methods as in a connected environment.

The clinic server essentially provides a store and forward mechanism for the data

packets collected throughout the day.

2. After the uploads are completed, the Synchronization (Sync) server generates fresh

agency-specific database images to be downloaded. Configuration settings in the

Sync server identify which tables of the OLTP database need to be included in the

sync process. Stored procedures and the BCP (Bulk Copy Program) utility provide

the extraction of data from each table and control whether all data is collected or

whether an agency filter is used. The data from each table is compressed and stored

in Binary Large Objects (BLOBs) in the Sync database.

3. At a pre-designated time, the clinic server begins the download process. The

synchronization process clears the schema on the laptop server before it starts

downloading the schema and data. So each download is a clean replacement so that

there is no need to log or cache the schema changes. Working from a list of files

provided by the Sync server, the clinic server performs the following steps:

a. Downloads, decompresses, and installs an empty database shell (contains the

schema but no data). This shell was loaded in the Sync database as a one

time configuration step (not part of nightly process).

b. Downloads and decompresses data for each required table, then loads that

data in the new database shell using the SQL Bulk Insert function.

c. Downloads, decompresses, and applies scripts to add indexing and perform

any other special tasks to the database on the clinic server.

In addition to the data that is downloaded to the clinic server, the database contains a

current copy of the application. The application is downloaded to the client automatically at

logon from the database based on a comparison of the manifest. This is explained further

in section 5, Deployment.

Detailed Technical Specifications Document MPSC WIC Data System Project

16 Detailed Design Final – March 24, 2008

4 Detailed Design

This section details the design of the various architectural components within the

application.

The design decisions within the solution are based on the following overall goals for the WIC

application:

Scalability

The system is designed for performance with the right layering and separation of

concerns. The application is meant to scale linearly against addition of infrastructure

resources, which provides for a predictable upgrade path.

Reliability

The solution specifies redundancy and highly-available technology for every mainline

component of the production environment. Database clustering, disk mirroring, and

stateless components are some of the techniques available in this architecture to

ensure reliable, continuous system operation.

Extensibility / Flexibility

This technical architecture permits the straightforward extension of the WIC

application through adherence to standards and well-established patterns and

practices. The architecture is based on a Services Oriented Architecture (SOA);

hence, adding extensions to the systems is easily achieved by adding additional

services to the overall solution without having to intrusively change system

components.

4.1 User Interface

The user interface design is based on the model view presenter paradigm. The main

emphasis of this approach is to separate modeling of domain, presentation, and actions

based on user input into three layers:

Model - Manages behavior and data of application domain

View - Manages display of information

Presenter – Manages visual presentation of the views

In order to further facilitate ease of maintenance, there is a high degree of abstraction used

within the development framework to facilitate reuse and enforce a common model for user

interface development and integration.

4.1.1 Design Strategy

The typical Model View Presenter (MVP) pattern interaction is detailed in the diagram below.

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Detailed Design 17

This represents the passive model for an MVP implementation where the data for the user

interface is synchronized as a result of an action by the user.

The MVP implementation for this solution is based on the active model for the MVP

implementation where the view (screen) is updated automatically via the eventing

mechanism through binding events and methods. The binding events are captured by the

view itself. However the presenter provides the view with data initially to bind to the

controls. The presenter also helps the view to display customized data so that the custom

logic is all written in the presenter. Binding takes full control over updating within the view.

The active model is used to leverage the benefit of using Microsoft‟s binding mechanism.

This is achieved by implementing the Observer pattern in the interface that looks for

changes in a proactive manner, and hence, leads to a more responsive system. The

Observer pattern, which is sometimes called the Publish/Subscribe pattern, is mostly used

for dynamic relationships between Objects (mostly views/screens and presenters in our

application) where the publisher simply publishes the event (raises the event) based on a

change to the state of the object, and the subscribers who have subscribed to the events

capture and process the event. Smart Client Software Factory (SCSF) facilitates

development by adding the subscribed objects automatically to event publication.

The overall control set is derived mainly from the standard .NET framework controls but has

been specialized to adapt to the requirements of the WIC application. The control set

contains specialized properties which can be set to monitor changes in the values of other

controls without having to programmatically write all the event handlers.

Detailed Technical Specifications Document MPSC WIC Data System Project

18 Detailed Design Final – March 24, 2008

In order to help with usability and ease of training people on the application, the user

interaction and visual presentation is layered as shown below.

Individual elements or components of this layout are presented based on the users‟

permissions and privileges. The specifics of these regions are further detailed in the System

Overview DFDD.

4.1.2 Objects and Actions

There are a number of control classes used in the implementation of the user interface.

However, this section highlights the ones that are of most significance. For details on

others, please refer to the documentation within the code.

Combo box

The WICComboBox is a specialized UI class built on top of the base ComboBox

provided by the .NET framework. This specialized combo box handles two different

data sources, where one source contains only valid values and the second contains

all values, including deactivated ones for historical purposes.

MaskedTextBox

This provides easy application of primary validation based on masks.

Label

The label is specialized to abstract the logic of text and style. With a uniform way of

applying these attributes, it is easy to change the display without writing too much

code.

Date Time

The DataGridDateTimePicker provides drop-down date functionality in a data grid

and is specialized from WICDateTimePicker, which contains the attributes required

for displaying different drop-down calendars and easily applying data range checks.

Text Box

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Detailed Design 19

The text box is specialized many different ways within the user interface framework.

The overarching design decisions for the specialization are:

 Standard application of primary validation.

 Ease of translating data types from the services interfaces.

 Ease of changing the presentation based on attributes of the control.

There is a consistent effort across the interface to standardize control interaction into

specific control types to aid maintenance.

Form

There are three basic types of forms in the system:

 Form without Navigator: This form provides the same look and feel without

navigator control.

 Form with Navigator: This form provides the same look and feel with

navigator control.

 Pop-up: These are the dialogs for messaging and other modeless dialogs that

are available as options from within a primary page.

Menu

This set of classes controls the entire navigational framework of the system. The

actual navigational paths are stored as a set of XML configuration files, which are

then loaded at runtime to draw out the navigation for users based on their security

profile.

4.1.3 Interface Design Rules

User interface design is a collection of several different tasks:

 User interface modeling. This is the process in which we look at the tasks a

program needs to accomplish and decide how to break these tasks into windows and

controls.

 User interface architecture. This is the logical design we use to divide the

functionality of the application into separate objects. Creating a consistent, well-

planned design makes it easy to extend, alter, and reuse portions of the user

interface framework.

 User interface coding. This is the process in which we write the code for

managing the user interface with the appropriate classes and objects. We follow the

first two steps to lay out a specific user interface model and architecture before we

begin this stage.

The user interface modeling has undergone a number of iterations over time to optimize

ease of use and user satisfaction. The emphasis of the user interface is on:

 Simplicity.

 Ease of navigation.

 Use of as many standard controls as possible.

 Provision of a user interface that enables users to conduct their work with the

minimal number of mistakes.

 Provision of relevant information in accordance with the users‟ roles and tasks.

Detailed Technical Specifications Document MPSC WIC Data System Project

20 Detailed Design Final – March 24, 2008

In addition, here are the guidelines for choosing the user interface components:

 Limit the number of characters a text box can accept, and use the key-press event to

make sure invalid characters are ignored.

 Use drop-down lists when the user is selecting one of several predefined choices.

 Disable invalid options. This is centralized through the security framework.

 Use radio buttons when choices are mutually exclusive.

 Give feedback on long running tasks using the standard control for wait displays.

These are some of the most important guidelines. There are others that are acquired

through years of developing user interfaces. Those guidelines are not detailed here since

they deal with aesthetics and the general philosophy in developing user interfaces.

The user interface coding adheres to the overall structure laid out within the user interface

framework as described in the System Overview DFDD. The framework is built on a

hierarchical model of user interface design with abstracted classes that provide the base

functionality for the other classes within the solution. An example of this is the inheritance

from the TextBox control. The abstractions are based on usage and common user interface

behavior rather than a business function.

4.2 Business

The business rules and logic for the solutions are developed in a separate layer. There are

two aspects of the business logic code: the workflow specific to a domain within the

application and the rules that govern one or more domains within the application. The

actual workflow for the business is implemented within the code and also controlled through

the navigation of the user interface. The business rules are implemented as procedural

conditions within the code, but wherever possible, these conditions are driven through a

collection of system parameters defined in the database. Having the conditional logic

configurable through database-persisted parameters allows for quick response to changes in

business needs. Further detail on the business classes can be found in Appendix B.

The business services for the solution are implemented in accordance with a Services

Oriented Architecture (SOA). There are specific services that need to be invoked by the

application installed on the client and are available through WCF services or local invocation

as per the needs of the client. As noted in the Architectural Overview, the business services

layer is provided through WCF Services. In the classical sense of SOA, these services fall

under the category of process-centric services, which are broadly defined as services that

encapsulate the specific business logic and processes of an organization.

These business services are segregated into the following categories:

 Clinic Services

 Food Management

 Scheduler

 System Administration

 Operation

 Vendor Management

 Finance

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Detailed Design 21

Each service has its own interface based on the operation contract. The business service

communicates with the client through the proxy that exchanges a business entity. The

business entity is prescribed for each unit of work that contains data obtained through the

typed dataset in the underlying data access layer. Further information on the management

of units of work can be found in the System Overview volume of the Detailed Functional

Design Document (DFDD).

4.2.1 Design Strategy

The services are developed as coarse-grained services that expose a collection of methods

which are inline with business processes. There are two distinct patterns implemented on

the client and server side of the application, depicted in the schematic below.

4.2.2 Objects and Actions

The service implements one „Getxxxx‟ and „Savexxxx‟ method call for each unit of work. The

„Get‟ method returns the service entity object that contains the actual data list. The „Save‟

method accepts the service entity object and returns the fresh service entity upon

successful save. The service is implemented as a WCF service. Each service is implemented

by a service contract.

The service interface contains a similar class for a service call, has a specialized class to

assemble the information as required by the client, and runs on the server. This allows for

the formats in the client and server to change independently from one another.

The HouseholdInterface provides the basic communication to the server and the

HouseholdAssembler and takes the values coming from the business layer in the application

and converts them into the client format.

4.3 Data Access

The data access layer uses a pure typed dataset that improves the performance and

reduces maintenance because of less human-written code. The typed dataset also reduces

the usage of stored procedures. The data access layer also houses the business objects and

the data contract attribute related to each unit of work and in addition, it houses a

convertor and a service entity class. The convertor converts the data in the typed dataset

into the corresponding business objects during the „get‟ operation and converts the data in

the business objects into the datasets. The entity encapsulates the actual data that gets

transported between the server and client.

The overall design strategy is based on the following objectives:

 Improve interoperability.

 Reduce the data load by not passing the dataset.

Detailed Technical Specifications Document MPSC WIC Data System Project

22 Detailed Design Final – March 24, 2008

 Provide independent data services that can be deployed and/or hosted individually.

4.4 External Interfaces

This part of the framework deals with all communication with systems or applications

outside of the MPSC WIC solution. The implementation of the interfaces is not meant to

serve as a means for enterprise integration; rather, it is a loosely coupled part of the overall

architecture that solves all issues related to external communication. The core principle

behind loose coupling is to reduce the assumptions two parties (components, applications,

services, programs, users) make about each other when they exchange information. The

more assumptions two parties make about each other and the common protocol, the more

efficient the communication can be, but the less tolerant the solution is of interruptions or

changes because the parties are tightly coupled to each other.

Overall there are many integration styles that can be used across applications, namely:

 File Transfer

Have each application produce files of shared data for others to consume and

consume files that others have produced.

 Shared Database

Have the applications store the data they wish to share in a common database.

 Remote Procedure Invocation

Have each application expose some of its procedures so that they can be invoked

remotely, and have applications invoke those to initiate behavior and exchange data.

 Messaging

Have each application connect to a common messaging system, and exchange data

and invoke behavior using messages.

In the case of WIC applications, the interfaces can be developed as file transfer and

messaging.

4.4.1 Design Strategy

The interface requirements in the design are driven by the need to provide external systems

with data from the WIC system. The invocation of the file transfer is external to the current

implementation and needs to be configured based on the target environment. After the

extracts have been made available in a flat file, there is a need for manual intervention to

make sure that they are transmitted using File Transfer Protocol (FTP).

Every extract or file transfer to external systems is maintained separately and a similar

design is followed for the shared database access for other systems. The shared database

is not shared for real-time or on-line access; it is shared for information exchange and

serves as a one-way feed to external systems, like the EBT host.

4.4.2 Objects and Actions

An example of an extract is the PEDNSS table below. This is an extract from the main

database and is subsequently extracted into a flat file using DTS (Data Transformation

Service) for FTP transmittal. All extracts are handled in a similar fashion; those that do not

require a flat file are available in a separate database.

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Detailed Design 23

4.5 Reporting

The reporting subsystem provides all the services required to generate reports from the

WIC application. The reporting solution is based on Microsoft SQL Server 2005 Reporting

Services. The managed reports are created using Report Designer, which facilitates

designing a report, previewing the report and publishing the report to the SQL Server 2005

Reporting Services report server. The Report Designer accesses a replicated OLTP database

that may also house several denormalized tables. The replicated OLTP is updated nightly

after batch processing is completed. The reports can be viewed using the ReportViewer

control.

Detailed Technical Specifications Document MPSC WIC Data System Project

24 Detailed Design Final – March 24, 2008

Ad Hoc reports are also created using the Report Designer, but for ad hoc the reporting

engine is connected to the Warehouse database. This database is a denormalized database

which is queried by end users to enable them to make decisions where there is no managed

report. When these tables are populated from the OLTP database, codes and reference

tables are expanded (e.g., „A‟ will be replaced with „active‟, „T‟ will be replaced with

„terminated‟, etc.) and the names of nutrition education classes, risks, foods, etc. are

spelled out. Text columns are not brought over because comment columns and other free

form text fields are too unpredictable to be useful in an ad hoc query structure.

4.5.1 Design Strategy

The design is based on the following tenets:

 Decouple the reporting engine from the reporting interface.

 Provide ease of implementation for reporting functions from a development and

maintenance standpoint.

The interface for the developer is a generic execute type invocation, which allows the

developer to specify parameters for the report and the type. For the MPSC solution, the

layer that invokes the reporting engine is developed in an open source API for the Report

Definition Language (RDL).

4.5.2 Objects and Actions

The components that make up the RDL specific part of the implementation are:

Component Name Description

RDL engine RdlEngine.dll Provides the reporting engine and

rendering services. This is the base

engine that other components require.

ReportViewer ReportViewer Provides a .Net control for embedding

in .Net applications. Displays RDL

reports and provides methods for

printing and saving to HTML, PDF, and

XML.

RDL reader RdlReader.exe A MDI application that provides Adobe

Reader-like capabilities for RDL

reports. This application shows some

of the functionality supported by the

.Net RDL control.

RDL Designer

RdlDesigner.exe The WYSIWYG designer allows the user to

create standard RDL reports without

knowledge of RDL. This includes

wizards for creating new reports and

for inserting new Tables, Matrixes, and

Charts into existing reports. There are

property dialogs for all report objects

with extensive support for the entire

range of power of RDL.

http://www.fyireporting.com/images/dscrnshot1.JPG
http://www.fyireporting.com/images/dscrnshot1.JPG

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Detailed Design 25

RDL desktop RdlDesktop.exe A small desktop report server

providing browser access to

reports. Point the browser to the

URL http://localhost:8080/. Port

8080 is the default and can be

modified in the config.xml file. For

security, this server only accepts

requests from a user‟s local machine

unless reconfigured.

RDL batch RdlCmd.exe Batch command executable for

creating PDF, XML, HTML files from

RDL files.

Data Sources DataProviders.dll Provides data access to Web

Services, XML, Web logs, CSV files, file

directories.

4.6 System Services

4.6.1 Security

Security involves managing risks by providing adequate protections for the confidentiality,

privacy, integrity, and availability of information. Security is not a phase in development,

design, or deployment but rather a continuous exercise in ensuring that an operating

environment is not compromised by a malicious attack. The security solution is audited

internally by CIBER‟s security practice to ensure adherence to best practices.

4.6.1.1 Design Strategy

Most security models for applications can be broken into the following components or

principles:

Infrastructure

This deals with securing the physical, data, network, and transport layers within a

network. The strategy deployed should ensure that the software and hardware used

within an enterprise is not open to attacks.

Application

Application security focuses on securing access to parts of an application and also

resources that make up the working application. This area of security deals with the

application and presentation tier of the network.

Data

Data security deals with securing access to all information sources that constitute

persistent and transient storage, including securing access to data files that might be

used to download and upload content to remote sites.

Infrastructure

The infrastructure consists of the network and servers. Included in the network are

the DeMilitarized Zone (DMZ), firewalls, and servers. The configuration and security

for every part except the servers is based on the hosting solution. The servers are

secured (referred to as “hardened” or “hardening” in security parlance). As part of

Detailed Technical Specifications Document MPSC WIC Data System Project

26 Detailed Design Final – March 24, 2008

an overall “defense in depth” approach, including multiple layers of security,

Microsoft recommends implementing server security measures tailored to the “role”

or purpose of each server in the organization. The typical roles covered by Microsoft

guidance on security available as Windows Server 2003 Security Guide are:

 Domain controllers

 Infrastructure servers

 File servers

 Print servers

 Internet Information Services (IIS) servers

 Internet Authentication Services (IAS) servers

 Certificate Services servers

 Bastion hosts

Based on the hosting solution and environment, CIBER can provide

recommendations for the applicable roles in the target environment.

Application

The application software that forms the core of the system is designed and

developed with security in mind using appropriate secure application development

techniques. In keeping with this philosophy, all new modifications and

customizations during the project are developed using industry-accepted secure

coding principles.

Controlling user access

 Authentication: This is implemented within the solution using a

combination of code and database tables. Since there is a tight

integration with overall systems behavior, there is no dependence on

existing security infrastructure or frameworks. This ensures that the

solution utilizes investments in existing technology and infrastructure

while providing an extensible framework for security.

 Authorization: Most of the authorization flows through the profiles created

for authentication. Since the various components in the solution work

under an impersonated account, the management of roles involved in the

authority over various resources (like database and file systems) is

minimized.

 Role-based access: Roles are heavily used across the solution to provide

the administrator with manageable groups of permission sets. Roles are

used to determine field availability and actions (menu items) on the user

interface. The application access control facility is highly flexible, allowing

administrators to assign whatever privileges are needed by users to

perform their job function. This allows fine-grained control of access

privileges and permits the implementation of a role-based “least privilege”

model, widely recognized as the best application security model because it

avoids assignment of excess privileges such as might be the case in less

granular application security schemes.

 Session management: The user interface is Windows forms-based and it

accesses services on a Web server, in case of connected solutions, or

synchronization services, in case of a disconnected solution. It is

http://www.microsoft.com/technet/security/prodtech/windowsserver2003/w2003hg/sgch00.mspx

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Detailed Design 27

imperative that users not monopolize resources on the Web server;

otherwise, it affects scalability adversely. Additionally, unlimited access to

Web server resources is a great security risk, as it provides an opportunity

to launch a „brute force‟ attack on the system. In order to address these

issues, we make use of the .NET-supplied infrastructure for session

management.

 Navigation: Navigation within a system determines usability and

functionality, which has an effect on security. Limiting the amount of

functionality available to a user automatically limits the surface area of

attack in an application; in addition, it provides information security

because the users can only see what they are authorized to access.

Developing specific navigational paths and views for specific user roles

within the system enforces these principles within the current solution.

 Auditing and logging: The solution utilizes the logging features available in

Enterprise Library and Microsoft SQL Server to provide robust logging of

all types of access to the system, from security information to changes

made to database fields.

 Screen elements / Masking of data: While navigation limits the areas of

the system that can be accessed, the specific pieces of information

presented still need to be protected/unprotected (hidden/shown) based on

access privileges. These types of screen elements are mapped back to

user roles.

Maintaining user access

The user access, roles, and permissions are an integral part of the solution.

All these are maintained using screens provided in the current application,

which allow for very granular controls on the actions that can be performed

by the user within the system.

Data

This uses the facilities provided in the Microsoft SQL Server. All access to the system

is based on using a common user profile for all database operations since this

promotes the most effective use of connection pooling, and hence, provides effective

scalability to the solution. This user profile is used by system components within the

Data Access Layer and is never exposed to the client. All client calls are passed to

the Data Access Layer for data persistence and management, making this a very

secure and robust solution.

4.6.1.2 Objects and Actions

There are a number of classes used to control the access and permissions to on screen data

as shown below.

Detailed Technical Specifications Document MPSC WIC Data System Project

28 Detailed Design Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Detailed Design 29

The Security Controller manages the specific data packets based on agency, clinic, and role.

Since this is a profile that is stored against a login for a user, it is applied uniformly to the

entire set of user interface screens. The methods on the class also supply the functionality

for checking for actions against the data without having to retrieve the security permissions

each time.

4.6.2 Cache

One of the best ways for reducing the amount of server roundtrips is to store the data

locally on the client. This is one of the primary goals and advantages of the Smart Client

architecture. The cache management for this solution focuses on the client-side caching for

information. The caching is done using Enterprise Library‟s Caching Application Block. The

block caches the most-used data such as codes, system parameters, error messages, local

agencies, and clinic lists in isolated storage. The isolate storage is created per MPSC system

for each user. The data in the cache are serialized.

4.6.2.1 Design Strategy

The design is based on the Smart Client Offline Application Block provided by Microsoft. The

overall architecture is described in the following schematic.

The Offline Application Block provides the basic functions required by Smart Client

applications with offline capabilities. Its essential features include:

 Detecting the presence or absence of network connectivity.

 Notifying all registered components when the connection state changes.

 Downloading and caching the reference data that allows the application to function

when the network connection is not available.

AApppplliiccaattiioonn

AApppplliiccaattiioonn SSeerrvviiccee

OOnnlliinnee PPrrooxxyy

CCoonnnneeccttiioonn MMaannaaggeerr

SSeerrvviiccee AAggeenntt MMaannaaggeerr

DDaattaa LLooaaddeerr MMaannaaggeerr

QQuueeuuee MMaannaaggeerr

EExxeeccuuttoorr

RReeffeerreennccee DDaattaa CCaacchhee

SSeerrvviiccee AAggeenntt

CCaacchhee BBlloocckk

QQuueeuuee MMaannaaggeerr

CCoonnnneeccttiioonn DDeetteeccttiioonn
SSttrraatteeggyy

AAggeenntt

AApppplliiccaattiioonn CCooddee

BBlloocckk CCoommppoonneennttss

BBlloocckk pprroovviiddeess ssoommee ccoommppoonneenntt

Detailed Technical Specifications Document MPSC WIC Data System Project

30 Detailed Design Final – March 24, 2008

 Storing message data locally while the application is offline.

 Synchronizing message data with the server when the network connection becomes

available.

4.6.2.2 Objects and Actions

Most of the objects are defined within the application block, and there are additions made

specific to the solution. The table below describes the basic components in the solution.

Elements Description

Connection Detection Strategy Detects the current state of the physical

connection.

ConnectionManager Manages connection state services

related to physical network access. Uses

pluggable connection detection

components to determine the connection

state.

Executor When online, takes messages off the

queue and calls the Online Proxy

responsible for sending them to the

remote service. Additionally, sends

responses from the remote service back

to the application.

Queue Storage Provides the data store used to hold

message data and operations to be

delivered to the server when the

application is again online. For this

solution, the storage is a mix of

memory, database, and Microsoft

Message Queues (MSMQ).

QueueManager Behaves as a façade for the Queue

Storage Providers. It provides methods

for enqueuing and dequeuing the

messages. This provides the

serialization required within the solution.

DataLoaderManager Provides a facility to allow the

application to request reference data to

be downloaded at an appropriate time

for use during operations. This works in

an asynchronous manner to download

the reference data.

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Detailed Design 31

ReferenceDataCache Behaves as a façade for the Reference

Data Management subsystem.

Responsible for ensuring that data

required by the application is stored and

can be accessed locally (cached) while

the application is offline.

Cache Block Provides an implementation of physical

cache operations.

Application Service Agent Provides the ability to queue messages.

It also provides a channel for getting

results back to the application.

Online Proxy Class created by the application

developer that has the responsibility of

communicating with the remote service

that provides the business capability.

The Online Proxy also has the

responsibility of storing the reference

data in the cache, if required.

ServiceAgent Provides the base class implemented by

all application-supplied Service Agents.

The Service Agent base class is

responsible for registering the service

agent with the service agent registry.

ServiceAgentManager The Service Agent Manager returns the

results back to the appropriate Service

Agents after processing.

The connection strategy for the solution is to build for detection of connectivity and to allow

for the speed of the network, as far as possible, by introducing delays between

communications retries. This helps in ensuring that the user experience is maintained

through slow connections.

The queue manager is also a mechanism used for synchronization of offline content with the

server and provides a robust mechanism for transferring data between client and server.

4.6.3 Exception Handling

An exception occurs when a predefined assumption within the application is broken. The

exception management framework for the solution provides the basic building blocks to:

 Detect exception.

 Perform code clean up.

 Wrap one exception inside another.

 Replace one exception with another.

 Log and report error information.

Detailed Technical Specifications Document MPSC WIC Data System Project

32 Detailed Design Final – March 24, 2008

 Generate events that can be monitored externally to assist system operation.

The exception management framework for MPSC provides the following functions:

 Allows the solution to gracefully handle unforeseen conditions.

 Acts as a debugging aid to efficiently determine the root cause of the exception.

4.6.3.1 Design Strategy

The design is based on developing a customer exception handler that wraps all the logic

of exception propagation and logging within itself. The design strategy, which is also a

coding practice, is built around the following guidelines:

 Programmatically check for any exception errors such as NullReference or

ArgumentZero exceptions. Use the exception handler to catch any exception that

comes from entities outside the boundary, such as WCF services, external

interfaces, etc. The application should also catch an exception that results from

an unhandled condition from these sources.

 Try to recover from the exception. If possible the application should itself try to

take a different path to obtain resolution.

 Add the contextual information to the exception.

 Propagate the exception to the caller.

The actual information management and logging of the exception is handled within a

generic exception class that utilizes Microsoft‟s Enterprise Instrumentation Framework to

write the information to the system‟s database. All exceptions are recorded and

viewable through the System Administration user interface.

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Detailed Design 33

4.6.3.2 Objects and Actions

The diagram below shows the main class that wraps the overall logic for handling and

logging exceptions. The MPSC exception class inherits fields, properties, and methods

from the Microsoft class in addition to the MPSC-specific ones. In addition to this class,

there are coding guidelines that help in the implementation of exception handling

throughout the solution. The basic interface to use this class is the overloaded

constructor. In addition, the BuildErrorStack and Dump methods provide ways to add

valuable information to the exception and then write it out to a configurable location.

4.7 Database

The database is modeled based on real business entities, as far as possible, and is used to

drive the object design of the application. The Entity Relationship Diagram (ERD) is

attached in the Appendix.

The MPSC system requires five separate databases. Separation into these areas is standard

because it allows the separation of the processing load across multiple servers. Servers are

usually configured differently based on the processes that they will run. Online servers may

have faster processors and more memory, whereas reporting and warehouse servers will

have more disk space and faster i/o channels.

4.7.1 OLTP

OLTP stands for On-Line Transactional Processing. This database contains the tables to

which the online system reads and writes. These are the transactional tables that are used

by the functional areas every day.

4.7.2 Audit

There is an exact copy of each online table schema in a separate audit database. These

tables are populated by the execution of triggers on the online tables. Inserts, updates, and

deletes trigger writes to the audit database. Database Administrators will use MS SQL tools

Detailed Technical Specifications Document MPSC WIC Data System Project

34 Detailed Design Final – March 24, 2008

to access the audit database to research data issues or concerns. There is no user interface

to access the audit database. There is no referential integrity in the audit database.

4.7.3 Warehouse

The warehouse database contains denormalized versions of the data required for ad hoc

reporting. The stored procedures that are used to populate the warehouse tables are in the

warehouse database. There are scheduled jobs that populate the warehouse tables. The

following Warehouse tables are included to address ad hoc reporting needs:

Clinics

Complaints

EBT Card Transactions

EBT Issuances

EBT Redemptions

FIs

Inventory – Non Serialized

Inventory – Serialized

Issued Containers

Nutrition Education Pamphlets

Nutrition Education Topics, Sub-Topics, & Counseling Points

Participants

Participant Snapshot

Participation

Referrals

Returned Formula

Risk Data

Scheduler Appointments

Scheduler Nutrition Education Classes

Scheduler Slots

Staff Competency

Staff Credential

Staff State Training

Surveys

Time Study

Vendor Civil Money Penalties

Vendor Details

Vendor High risk

Vendor Training

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Detailed Design 35

Vendor Visit History

4.7.4 Reports

The reports database contains the OLTP replicated tables that are populated by nightly

batch jobs. In addition this database also contains denormalized tables that present

aggregated data in the required reporting formats. The database may also house the stored

procedures that are called from the report designer. If runtime requirements are introduced

for production reports that require a level of performance not previously specified and that

are an exception to how most production reports are managed, report tables are created

and populated on a scheduled basis. The reports are requested through reporting services

asynchronously so that users can move on the other tasks after placing the request for the

report.

4.7.5 Synchronization

The synchronization database contains the tables necessary to support the data needs of

the disconnected clinic servers. Synchronization is described in more detail in section 3.8

Disconnected Operations.

Detailed Technical Specifications Document MPSC WIC Data System Project

36 System Deployment Final – March 24, 2008

5 System Deployment

The deployment of the system is highly scripted. Scripts have been developed to deploy the

solution internally within the development environment. The scripts provide the necessary

automation to ensure that the system can be rebuilt with minimal effort.

The deployment methodology is tightly coupled with the software development life cycle and

is delivered through “continuous integration.” Continuous integration is the process of

starting a build whenever code is checked into the source control server or at a

predetermined interval. This has the following advantages:

 Build breaks are caught early.

 It assures the developer that the build on top of which he is rebuilding is the latest

one and would cause less regression.

 The feedback loop is smaller. A developer does not have to wait for the end of the

day or week to find out how his check-in affected the build.

 Integration testing moves up in the chain. Every check-in goes through the

integration testing where issues are caught early on.

 Better development processes are enforced with more accountability on each

developer.

The entire automation is controlled through scripts developed for various parts of the

deployment. The whole build and deployment process is built based on the MSBuild

process. The whole build process is handled through a single process that includes building

the application, deploying database changes, and hosting the services.

5.1 Server

The server deployment assumes that the required systems software and patches, as

mandated by Microsoft, have been applied to the servers.

There are two distinct server-side installations:

 Web Server: The Web Server installation consists of all the settings required for

deploying a WCF service and the configurations that accompany that. Some of the

configurations considered are:

o Entries into the services discovery.

o Setup required for the virtual web sites within IIS.

o Replacement within web.config.

 Database Server: The database server has the OLTP and the reporting databases.

The deployment for these are scripted using T-SQL and are wrapped in the same

open source tool suite mentioned above.

5.2 Client

The client update process is based on the Application Updater component authored by

Microsoft. The application block has been enhanced and changed in places to suit the

specific needs of the MPSC solution.

The overall design goals for the client updating process are:

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 System Deployment 37

 Update the client on demand without any manual intervention.

 Update only the parts that have been changed.

 Employ an extensible packaging process in order to add or remove components with

ease.

 Provide a secure deployment which ensures integrity of the packages being installed

on the client.

The specific steps involved in communication between the client and the server are

described below. Within the context of the MPSC solution, this component is referred to as

the “AppUpdater” and works equally efficiently for connected and disconnected clinics.

5.2.1 Application Publishing Process

1. Application files are streamed, converted to Byte Arrays, and saved as BLOBs in the

OLTP database

2. A nightly synchronization process copies application BLOBs to clinic servers so clients

in disconnected clinics can retrieve the latest version of the application.

5.2.2 Initial Application Install Process

1. The user navigates to the “Click-For-WIC” Web page.

2. A bootstrap utility (WICDownloader) is downloaded to the desktop.

3. WICDownloader downloads AppStart and AppUpdater from the Web service and

creates a “WIC” shortcut on the desktop which references AppStart.

5.2.3 Daily Application Update Process

1. The user double-clicks the WIC icon on the desktop, initializing AppStart.

2. AppStart starts the current version of AppUpdater when the WIC icon is clicked.

3. AppUpdater obtains a new manifest through the Web service, compares it with its

own, and if an update is available, begins downloading files. The manifest file

contains information about all application files and folder structures on the client.

a) The scavenging feature reduces network load and time required for the download

by downloading only new or modified files. Files that have not changed from the

previous version are simply copied to the new version folder.

b) Cleanup tasks are performed (manifest replaced, temp files and old versions

deleted - keeps last 3 versions only).

4. The newest version of the WIC application is started and the user is prompted to

logon.

Detailed Technical Specifications Document MPSC WIC Data System Project

38 Systemic Qualities Final – March 24, 2008

6 Systemic Qualities

There are a number of areas within the architecture that need to be considered for the

overall solution and applied system-wide instead of within the scope of a specific

component. Outlined in this section are the most important considerations for system-wide

architectural requirements.

6.1 Performance

Performance of a solution is its ability to respond under various load conditions. This is

usually quantified as:

 Throughput: Throughput is the number of requests that an application can serve in a

specified unit of time. Throughput is typically specified in requests per second.

 Availability: Availability is the percentage of time an application is responsive to

client requests.

 Scalability: Scalability is discussed in detail in the next section.

 Response Time: The response time is a measure of time the user has to wait in order

to complete a request. This usually is the basis of user perception for performance

of all components of the solution.

The typical latencies with a Web-based solution are detailed below.

The whole emphasis of a performance approach is to minimize latencies, which keeps the

aforementioned factors of throughput, availability, scalability, and response time within

acceptable limits.

The requirements for the solution stipulate that the application needs to be able to provide

information back to operators in less than five seconds; target response time is less than

three seconds from panel to panel within the application. Smart client is designed to take a

bit longer to initially download data and to save data, but this has a payback in multiples as

panel-to-panel navigation and data updating within the application approaches sub-second

response.

The primary consideration with performance requirements is the speed of the network. The

architectural solution is to limit the amount of data being returned to the user for any

particular request. Composite and sub-view patterns are employed to limit the amount of

data required to be transported over the wire. The response packets are further

compressed to ensure optimal usage of the network bandwidth.

From a persistence view, caching strategies are employed to minimize database access for

commonly used data. The client downloads this data and caches it locally instead of having

to request it with every packet of information.

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Systemic Qualities 39

The infrastructure available across the consortium states determines a lot about response

times, and we continue to ensure that the overall solution performance is acceptable.

6.2 Scalability

Scalability is the ability of an application to maintain or improve performance as the user

load increases. Scalability also refers to the ability of an application to recognize

performance benefits as server resources increase. This system-wide concern primarily

references the server since the client is not a bottleneck in a Smart Client system.

The design of the application is loosely coupled with each of the following layers of the

solution candidates for being scaled horizontally (adding more hardware):

 Web Server

 Database Server

The solution based on a smart-client model is meant to scale to take advantage of all the

hardware (especially server) resources provided within these resource areas.

The degree of scaling to support the system demands will vary from state-to-state. CIBER

will work with each state to determine the proper server configurations based on caseload

and number of concurrent users.

6.3 Usability

Usability is a quality attribute that assesses how easy user interfaces are to use. It also

encompasses how easy a system is to learn and memorize and how efficient it is to

navigate.

The system is built on the following basic design principles that help satisfy the

aforementioned requirements:

 The regions within the user interface are layered with specific functional attributes in

mind. Please refer to section 4.1 for more details.

 The user interface deploys an easy navigation framework to ensure accessibility to all

parts of the application without overwhelming the user with too much to do.

 The layout for the user interface combines information required for a business

function within a set of screens.

 There is online user help to assist users with common tasks.

 The scheduler closely resembles a calendar and Microsoft Outlook type interface for

ease of use.

 There is a quick search available from various parts of the system.

 The validation framework within the solution provides intuitive messages to help

users.

Detailed Technical Specifications Document MPSC WIC Data System Project

40 Future Considerations Final – March 24, 2008

7 Future Considerations

Any architecture process cannot be complete without acknowledging the fact that it needs

to adapt to technological change. This section details the changes in technologies that can

impact the solution. This is by no means an exhaustive review of all the technology

changes with the solution set.

In addition to changes in technology, any WIC system needs to be able to adapt to

upcoming changes in the governance or rules of the WIC program. The current architecture

easily supports these changes because it isolates a number of the rules as parameters.

However, if there are material changes to the overall rules and governance of the WIC

program at the State or Federal level, it might necessitate a review of the codebase in the

solution at a more detailed level.

Technology

Microsoft is rapidly adding to the current software base for Smart Client applications.

The current Release To Manufacturing (RTM) release for the .NET Framework is 2.0.

However, .NET Framework 3.0 is already in beta. This latest version of the

framework is not being used for this project because of the late release date and the

stabilization period required by any new technology. In addition, there is the

possibility of a new server operating system being released in the next year. Since

the system is not being developed with specific dependencies on the facilities

provided by the server components (except the .NET Framework), there should be

few to no problems expected with upgrading to the latest release of the operating

system.

 Windows Presentation Foundation

Windows Presentation Foundation (formerly code named "Avalon") is

Microsoft's unified presentation subsystem for Windows and is exposed

through .NET Framework v3.0, Windows Vista's managed-code

programming model.

Windows Presentation Foundation (WPF) consists of a display engine that

takes full advantage of modern graphics hardware and an extensible set of

managed classes that development teams can use to create rich, visually

stunning applications. WPF also introduces Extensible Application Markup

Language (XAML), which enables developers and designers to use an XML-

based model to declaratively specify the desired user interface (UI)

behavior.

Windows Presentation Foundation provides a unified approach to the user

interface, 2D and 3D graphics, animation, documents and media. It

allows designers to be an integral part of the application development

process.

Due to the change in the basic systems infrastructure provided by

Microsoft, this changes the way some of the interfaces of the future will be

written and thought out. However, to retrofit the current implementation

to the WPF requires a lot of rework since WPF is a completely different

base architecture for user interface development than the one used for the

MPSC WIC application.

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Future Considerations 41

 LINQ

The next big challenge in programming technology is to reduce the

complexity of accessing and integrating information that is not natively

defined using Object-Oriented (OO) technology. The two most common

sources of non-OO information are relational databases and XML.

Rather than add relational or XML-specific features to our programming

languages and runtime, we have taken a more general approach and have

added general purpose query facilities to the .NET framework that apply to

all sources of information, not just relational or XML data. This facility is

called .NET Language Integrated Query (LINQ).

Language Integrated Query allows query expressions to benefit from the

rich metadata, compile-time syntax checking, static typing and

IntelliSense previously available only to imperative code. Language

Integrated Query also allows a single general purpose declarative query

facility to be applied to all in-memory information, not just information

from external sources.

This is a facility of the future and requires some significant changes to the

base infrastructure of the data retrieval for complete adoption. There is a

possibility of refactoring the code to integrate this technology, but it would

be a significant change moving forward.

Detailed Technical Specifications Document MPSC WIC Data System Project

42 Dependencies Final – March 24, 2008

8 Dependencies

8.1 Tools

Tiers can be defined at a number of levels: conceptual, logical and physical.

At a conceptual level, they represent distinct and cohesive aggregations of functionality.

Typical tiers include:

 Client, representing the point at which data is consumed by the system‟s users.

 Presentation, supporting generation and customization of content for specific client

device types, languages, or based on other personalization parameters.

 Business logic, centralizing and encapsulating the business logic of the system and

aggregating disparate backend services.

 Integration, wrapping access to backend resources in higher level abstractions.

 Resource, where databases, devices, and legacy systems reside.

Product Version Description Tier

COTS Software

Windows 2003
Server

Enterprise
Base operating

system
All

Microsoft SQL
Server

2005

A relational

datastore for

managing

enterprise

information

Resource

Microsoft SQL
Server Reporting
Services

2005
Enterprise

reporting tool
Resource

Software Frameworks

Enterprise
Library

3.1
Library of

application blocks
All

Tools

Microsoft Visual
Studio

2005

Integrated

development

environment

All

Microsoft Visio 2003 A UML design tool All

StarTeam 2005

A full feature

source control

and configuration

management tool

All

(Development, Integration,

Test environments at

CIBER Harrisburg)

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Dependencies 43

Product Version Description Tier

QualityCenter 8.0

A test

management tool

to track defects,

create and

manage test

cases, and

automate

regression

testing.

All

(Test environments at

CIBER Harrisburg)

8.2 Technologies

The overall solution for MPSC is based around Microsoft technologies and built on the .NET

Framework. The schematics below depict the overall deployment of the system.

The following schematic depicts a connected operation.

Detailed Technical Specifications Document MPSC WIC Data System Project

44 Dependencies Final – March 24, 2008

This schematic depicts a disconnected operation.

8.2.1 Smart Client Application

This component is installed on each client machine that needs access to the

proposed MPSC WIC system. The installation is a seamless process handled

automatically by the application. The application runs in two modes:

 Connected

 Disconnected

The packaging from CIBER provides all the dependent application files for the

application with the exception of the .NET Framework. The system requires .NET

Framework 3.0 for its execution

8.2.2 Database Server

The OLTP database server stored procedures are accessed from the web server using

ADO.NET. All the stored procedures are written in T-SQL; hence, there is

dependence on Microsoft SQL Server 2005 or later.

The database server does not need the .NET framework since there are no processes

executed from within the database.

8.2.3 Web Server

This acts as the “endpoint” for all calls made for database interaction with the

system. This is used by the online application as well as the synchronization

mechanism for off-line database synchronization (not depicted in the schematic for

the sake of simplicity). The “endpoint” is both an implementation and standard used

to describe WCF services communications. The implementation at this time is based

on the Microsoft standard and tested against the libraries provided in the .NET

framework for IIS. The web server is installed with IIS 6.0 which can handle 4000

concurrent HTTP connections operated by Windows Server 2003. In order to prevent

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Dependencies 45

malicious attacks it is preferred to set the connection limit. For example if the web

server needs to serve 50 clients simultaneously then it would be suggested that the

number of connections is set to 200 with connection timeout to 120 seconds. In

addition each WCF Service hosted in IIS has its own configuration data such as

<ServiceThrottling> which is set according to the number of requests it should

process simultaneously. The default is 10.

8.3 Infrastructure

The infrastructure requirements for the application cover the following:

 Servers

 Network

 Client configurations

 Bandwidth

In addition, there are a number of environments required for the development and

deployment of the solution. The next section addresses the environments required by the

consortium states to test and deploy the application.

8.3.1 Environments

There are two environments required by the consortium states:

Test / UAT

This is the test environment for the application and also hosts UAT. Although this is

one environment, it can have multiple installations of the application to support the

various versions required for testing and deployment of the solution. This also may

act as the back-up for the production environment in order to provide disaster

recovery.

Production

The production environment provides a redundant infrastructure that provides a high

degree of availability.

Detailed Technical Specifications Document MPSC WIC Data System Project

46 Dependencies Final – March 24, 2008

The schematic below details the overall infrastructure required for the MPSC solution. The

two environments mentioned above are a mirror of each other, which provides basic

disaster recovery through redundant environments. Wherever possible, these environments

are also hosted in separate physical locations to provide disaster recovery against any

environmental reasons.

The functions performed by the various servers are as follows:

 Disconnected clinic server

This serves as the local server for a set of client computers. Its serves the functions

of Web, application and database in one, while providing the synchronization

functions with the main stateside servers.

 Web Server

This hosts all the WCF services utilized for the solution. This is the main connection

point for all the communication with the stateside host environment. Each business

services has its own WCF services hosted in IIS.

 Database Server

This is persistent store within the solution and contains all On Line Transaction

Processing instances for the solution. There is one instance of the database that

supports the entire application.

 Snapshot Server

This serves as the main resource for all synchronization with disconnected

operations. This also has a copy of the OLTP database, which is used to create sets

of data to be synchronized with disconnected clients.

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Dependencies 47

 Data Warehouse Server

The data warehouse will serve as the base for data acquisition for all ad hoc

reporting needs within the system.

8.3.2 Hardware

The recommendations in this section represent the best practice scenarios as recommended

for the consortium. However, there might be specific situations that apply to individual

states that might need to be addressed on a case by case basis.

The following are not covered in these specifications:

 Specific recommendations around types of disk fail-over systems, like RAID 0 or

RAID 5, since it is assumed that the storage will be on a Storage Area Network

(SAN) or Network Area Storage (NAS).

 Intel processors are used for specifications; equivalent AMD chipsets can also be

used.

 There are no specifications on the type of network for connectivity between the

sites. This is dependent on the specific needs of the individual clinics as

described in the Site Survey Results.

Client Configuration

Connected

 Processor – Pentium 4 3GHz or greater

 RAM – 512 MB (1024 recommended)

 Storage – 10 GB hard drive

 Operating System – Windows XP Home SP2 or Professional SP2

Disconnected

 Processor – Pentium 4 3GHz or greater

 RAM – 1024 MB (2048 MB recommended)

 Storage – 20 GB hard drive (40 GB hard drive recommended)

 Operating System – Windows XP Home SP2 or Professional SP2

Server Configuration

Web Server

 Processor – Intel Dual Core Xeon 2.33 GHz or greater

 RAM – 4 GB

 Storage – 20 GB

 Operating System – Windows Server 2003 Enterprise R2

 Software - .Net Framework 3.0

Database Server

 Processor – Intel Dual Core Xeon 2.33 GHz or greater

Detailed Technical Specifications Document MPSC WIC Data System Project

48 Dependencies Final – March 24, 2008

 RAM – 16 GB

 Storage – 100 GB

 Operating System – Windows Server 2003 Datacenter R2

Snapshot Server

 Processor – Intel Dual Core Xeon 2.33 GHz or greater

 RAM – 8 GB

 Storage – 60 GB

 Operating System – Windows Server 2003 Datacenter R2

Data Warehouse Server

 Processor – Intel Dual Core Xeon 2.33 GHz or greater

 RAM – 4 GB

 Storage – 100 GB

 Operating System – Windows Server 2003 Datacenter R2

Disconnected Clinic Server

(These specification will vary depending on the size of the clinic, the number of

computers that connect to the server, and also the number of participants serviced.)

 Processor – Intel Dual Core Xeon 2.33 GHz or greater

 RAM – 8 GB

 Storage – 60 GB

 Operating System – Windows XP Professional SP2 or Windows Server 2003

Enterprise R2

Firewall, Router and other Devices

There are no application dependencies with respect to network access and control

other than they be secure. These security considerations must be consistent with

the standards of the hosting location as well. CIBER will make recommendations in

conjunction with reviewing the infrastructure and hosting environment of each state.

8.3.3 Network

Client

Bandwidth

Connected

of Workstations

in Clinic

Bandwidth

1 256 Kbps

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Dependencies 49

of Workstations

in Clinic

Bandwidth

2-5 750 Kbps

6 or more 1500 Kbps

Disconnected

of Computers

Concurrently

Synchronizing at

Agency / Clinic

Bandwidth

1-2 750 Kbps

3-5 1500 Kbps

Server

Ports

Web Server

 External – 443

 Internal - 443

Database Server

Most of the communication of the database server happens over Port 1433 (Microsoft

default). This will be reviewed closer to deployment as well.

8.4 Disaster Recovery and Business Continuity

As detailed in section 8.3.1, the testing and production environments are a mirror of each

other, which provides the basic redundancy for a disaster recovery strategy.

In addition, there are few operational considerations required to ensure the recovery is

smooth and meets the needs of the business. Here are the assumptions for the

recommendations to follow:

 A downtime of 2-4 hours is acceptable in case of failure.

 The respective members of the consortium have the personnel and/or Service

Level Agreements (SLA) in place to guarantee that the recovery plans are

executed.

Backup / Restore

All backups for the servers are made on a typical Grandfather, Father and Son rotation

basis. It is recommended that there be daily backups for all the servers across all

environments. Further in-line with industry trends, if possible, these backups should be

available on disk storage accessible from both sites that host production and testing

environments.

Detailed Technical Specifications Document MPSC WIC Data System Project

50 Dependencies Final – March 24, 2008

Database

The database logging mechanism needs to be configured so that it can support recovery for

transactions made within a period of 5 seconds. This applies to the connected solutions that

persist data continuously to the database. This is a standard feature available through

Microsoft SQL Server and is a part of the initial setup process.

Synchronization of Environments

The testing environment serves as the gate for all releases, and hence, always has the

latest code base for the system. However, it is recommended to have a copy of the OLTP

database placed on a separate instance on the testing database server on a weekly basis to

ensure that the testing server has the latest changes. Although Microsoft SQL Server Log

Shipping is an option, it is not considered since the server backups and application of the

differential backup should be sufficient given the 2-4 hour window.

Servers

Most of the servers are clustered, and hence, provide the necessary resilience against

hardware failure. The Web servers however are in a farm and utilized on a round robin

basis. It is recommended to have a hardware cluster for the database.

Server Monitoring

There must be some proactive server monitoring in the production environment in order to

ensure that failures are averted before they happen. The market leaders are IBM Tivoli and

Computer Associates Unicenter. Recommendations on the specific parts of the tool suites

require a detailed evaluation of the infrastructure. However, the broad areas that the tools

cover are servers, network and security.

Additional details on disaster recovery are addressed in the Disaster Recovery Plan.

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Standards 51

9 Standards

The standards presented in this section represent currently documented standards. These

may be enhanced throughout the project as standards are improved or added.

9.1 Coding Standards

9.1.1 Naming Guidelines

Of all the components that make up a coding standard, naming standards are the most

visible and arguably the most important. Always use Option Explicit and keep Option Strict

on.

Capitalization Styles

Use the following three conventions for capitalizing identifiers.

Pascal Case

The first letter in the identifier and the first letter of each subsequent concatenated

word are capitalized. Use Pascal case for identifiers of three or more characters. For

example:

BackColor

Camel Case

The first letter of an identifier is lowercase and the first letter of each subsequent

concatenated word is capitalized. For example:

backColor

Uppercase

All letters in the identifier are capitalized. Use this convention only for identifiers

that consist of two or fewer letters. For example:

System.IO
System.Web.IO

One might also have to capitalize identifiers to maintain compatibility with existing,

unmanaged symbol schemes, where all uppercase characters are often used for

enumerations and constant values. In general, these symbols should not be visible

outside of the assembly that uses them.

The following table summarizes the capitalization rules and provides examples for

the different types of identifiers.

Identifier Case Example

Class Pascal AppDomain

Enum type Pascal ErrorLevel

Enum values Pascal FatalError

Event Pascal ValueChange

Detailed Technical Specifications Document MPSC WIC Data System Project

52 Standards Final – March 24, 2008

Exception class Pascal WebException

Note: Always ends with the suffix Exception.

Read-only Static

field

Pascal RedValue

Interface Pascal IDisposable

Note: Interfaces always begin with the prefix I.

Method Pascal ToString

Namespace Pascal System.Drawing

Parameter Camel typeName

Property Pascal BackColor

Protected

instance field

Camel redValue

Note: Rarely used. A property is preferable to

using a protected instance field.

Public instance

field

Pascal RedValue

Note: Rarely used. A property is preferable to

using a public instance field.

Abbreviations

To avoid confusion and guarantee cross-language interoperation, follow these rules

regarding the use of abbreviations:

 Do not use abbreviations or contractions as parts of identifier names. For

example, use GetWindow instead of GetWin.

 Where appropriate, use well-known acronyms to replace lengthy phrase names.

For example, use UI for User Interface and OLAP for On-Line Analytical

Processing.

 Do not use acronyms that are not generally accepted in the computing field. (For

example, XML, TTL, DNS, UI, IP and IO are all OK.)

 When using acronyms, use Pascal case or Camel case for acronyms more than

two characters long. For example, use HtmlButton or HTMLButton. However,

capitalize acronyms that consist of only two characters, such as System.IO

instead of System.Io.

 Do not use abbreviations in identifiers or parameter names. If it is necessary to

use abbreviations, use Camel case for abbreviations that consist of more than

two characters, even if this contradicts the standard abbreviation of the word.

Class Naming Guidelines

The following rules outline the guidelines for naming classes:

 Use a noun or noun phrase to name a class.

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Standards 53

 Use Pascal case.

 Use abbreviations sparingly.

 Do not use a type prefix, such as c or class, on a class name. For example, use

the class name FileStream rather than CFileStream.

 Do not use the underscore character (_).

 Occasionally, it is necessary to provide a class name that begins with the letter I,

even though the class is not an interface. This is appropriate as long as I is the

first letter of an entire word that is a part of the class name. For example, the

class name IdentityStore is appropriate.

 Where appropriate, use a compound word to name a derived class. The second

part of the derived class's name should be the name of the base class. For

example, ApplicationException is an appropriate name for a class derived from a

class named Exception, because ApplicationException is a kind of Exception. Use

reasonable judgment in applying this rule. For example, Button is an appropriate

name for a class derived from Control. Although a button is a kind of control,

making Control a part of the class name would lengthen the name unnecessarily.

Interface Naming Guidelines

The following rules outline the naming guidelines for interfaces:

 Name interfaces with nouns or noun phrases or adjectives that describe behavior.

For example, the interface name IComponent uses a descriptive noun. The

interface name ICustomAttributeProvider uses a noun phrase. The name

IPersistable uses an adjective.

 Use Pascal case.

 Use abbreviations sparingly.

 Prefix interface names with the letter I to indicate that the type is an interface.

 Use similar names when defining a class/interface pair where the class is a

standard implementation of the interface. The names should differ only by the

letter I prefix on the interface name.

 Do not use the underscore character (_).

Attribute Naming Guidelines

Always add the suffix Attribute to custom attribute classes. The following is an example of a

correctly named attribute class:

Public Class ObsoleteAttribute

Enumeration Type Naming Guidelines

The enumeration (Enum) value type inherits from the Enum Class. The following rules

outline the naming guidelines for enumerations:

 Use Pascal case for Enum types and value names.

 Use abbreviations sparingly.

Detailed Technical Specifications Document MPSC WIC Data System Project

54 Standards Final – March 24, 2008

 Do not use an Enum suffix on Enum type names.

 Use a singular name for most Enum types, but use a plural name for Enum types

that are bit fields.

 Always add the FlagsAttribute to a bit field Enum type.

Static Field Naming Guidelines

 The following rules outline the naming guidelines for static fields:

 Use nouns, noun phrases, or abbreviations of nouns to name static fields.

 Use Pascal case.

 Use a Hungarian notation prefix on static field names.

 Use static properties instead of public static fields whenever possible.

Parameter Naming Guidelines

 The following rules outline the naming guidelines for parameters:

 Use descriptive parameter names. Parameter names should be descriptive

enough that the name of the parameter and its type can be used to determine its

meaning in most scenarios.

 Use Camel case for parameter names.

 Use names that describe a parameter's meaning rather than names that describe

a parameter's type. Development tools should provide meaningful information

about a parameter's type. Therefore, a parameter's name can be put to better

use by describing meaning. Use type-based parameter names sparingly and only

where it is appropriate.

 Do not use reserved parameters. Reserved parameters are private parameters

that might be exposed in a future version if they are needed. Instead, if more

data is needed in a future version of a class library, add a new overload for a

method.

 Do not prefix parameter names with Hungarian type notation.

Method Naming Guidelines

 The following rules outline the naming guidelines for methods:

 Use verbs or verb phrases to name methods.

 Use Pascal case.

The following are examples of correctly named methods:

RemoveAll()

GetCharArray()

Invoke()

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Standards 55

Property Naming Guidelines

The following rules outline the naming guidelines for properties:

 Use a noun or noun phrase to name properties.

 Use Pascal case.

 Do not use Hungarian notation.

 Consider creating a property with the same name as its underlying type. For

example, if a property named Color is declared, the type of the property should

likewise be Color.

Event Naming Guidelines

 The following rules outline the naming guidelines for events:

 Use an EventHandler suffix on event handler names.

 Specify two parameters named sender and e. The sender parameter represents

the object that raised the event. The sender parameter is always of type object,

even if it is possible to use a more specific type. The state associated with the

event is encapsulated in an instance of an event class named e. Use an

appropriate and specific event class for the e parameter type.

 Name an event argument class with the EventArgs suffix.

 Consider naming events with a verb.

 Use a gerund (the “ing” form of a verb) to create an event name that expresses

the concept of pre-event, and a past-tense verb to represent post-event. For

example, a Close event that can be cancelled should have a Closing event and a

Closed event. Do not use the BeforeXX/AfterXXX naming pattern.

 Do not use a prefix or suffix on the event declaration on the type. For example,

use Close instead of OnClose.

 In general, provide a protected method called OnXXX on types with events that

can be overridden in a derived class. This method should only have the event

parameter e, because the sender is always the instance of the type.

Control Naming Guidelines

The choice to prefix design-time controls with a predetermined string is a sound one. It

allows the developer to distinguish easily between design-time controls and other object

kinds.

All controls must be changed from their default name to an appropriate replacement value.

This assists future development and simply looks better. This must be done regardless of

how insignificant the control appears.

Controls have their own set of prefixes. They are used to identify the type of control so that

code can be visually checked for correctness. They also assist in making it easy to know the

name of a control without continually needing to look it up.

Detailed Technical Specifications Document MPSC WIC Data System Project

56 Standards Final – March 24, 2008

Table of Standard Control Prefixes

The following table is a list of the common types of controls together with their prefixes:

Prefix Control

lbl Label

llbl LinkLabel

btn Button

txt Textbox

mnu MainMenu

chk CheckBox

rdb RadioButton

grp GroupBox

pic PictureBox

dgv DataGridView

lst ListBox

cbo ComboBox

lvw ListView

trv TreeView

tab TabControl

dtp DateTimePicker

mon MonthCalendar

sbr ScrollBar

tmr Timer

spl Splitter

dud DomainUpDown

nud NumericUpDown

trk TrackBar

pro ProgressBar

rtb RichTextBox

img ImageList

hlp HelpProvider

tip ToolTip

cmn ContextMenu

tbr ToolBar

frm Form

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Standards 57

Prefix Control

bar StatusBar

nico NotifyIcon

ofd OpenFileDialog

sfd SaveFileDialog

fd FontDialog

cd ColorDialog

pd PrintDialog

ppd PrintPreviewDialog

ppc PrintPreviewControl

err ErrorProvider

pdoc PrintDocument

psd PageSetupDialog

crv CrystalReportViewer

pd PrintDialog

fsw FileSystemWatcher

log EventLog

dire DirectoryEntry

dirs DirectorySearcher

msq MessageQueue

pco PerformanceCounter

pro Process

ser ServiceController

rpt ReportDocument

ds DataSet

olea OleDbDataAdapter

olec OleDbConnection

oled OleDbCommand

sqla SqlDbDataAdapter

sqlc SqlDbConnection

sqld SqlDbCommand

Bs BindingSource

dvw DataView

Detailed Technical Specifications Document MPSC WIC Data System Project

58 Standards Final – March 24, 2008

9.1.2 Coding Guidelines

1. Always use predefined types rather than the aliases in the System namespace.

2. Avoid putting multiple classes in a single file.

3. A single file should only contribute types to a single namespaces. Avoid having

multiple namespaces in the same file.

4. Avoid files with more than 500 lines (excluding machine-generated code).

5. Avoid methods with more than 25 lines.

6. Lines should not exceed 80 characters.

7. Do not manually edit any machine generated code.

8. If modifying machine generated code, modify the format and style to match this

coding standard.

9. Avoid comments that explain the obvious.

10. Code should be self-explanatory. Good code with readable variable and method

names should not require comments.

11. Document only operational assumptions, algorithm insights, etc.

12. Avoid method-level documentation.

a. Use extensive external documentation for API documentation.

b. Use method-level comments only as tool tips for other developers.

13. Never hard-code a numeric value; always declare a constant instead.

14. Assert every assumption.

15. Make only the most necessary types public; mark others as internal.

16. Always use zero-based arrays.

17. Avoid providing explicit values for Enums.

18. Avoid specifying a type for an Enum (like long).

19. Never use goto unless in a switch statement fall-through.

20. Avoid function calls in Boolean conditional statements. Assign into local variables

and check on them.

21. Always explicitly initialize an array of reference types using a Do loop.

22. Only catch exceptions for which there is explicit handling.

23. In a catch statement that throws an exception, always throw the original exception

to maintain stack location of original error.

24. Avoid error code as methods return values.

25. Do not use the New inheritance qualifier. Use Override instead.

26. Minimize code in application assemblies (EXE client assemblies); use class libraries

instead to contain business logic.

27. Never hardcode strings that will be presented to end users; use resources instead.

28. Never hardcode strings that might change based on deployment, such as connection

strings.

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Standards 59

29. Never use unsafe code unless using interop.

30. Always use interfaces.

31. Avoid multiple Main() methods in a single assembly.

32. Never assume a type supports an interface. Defensively query for that interface.

33. Do not provide public or protected member variables. Use properties instead.

34. Do not provide public event member variables. Use event accessors instead.

35. Classes and interfaces should have at least 2:1 ratio of methods to properties.

36. Avoid interfaces with one member.

37. Strive to have 3-5 members per interface and no more than 20 members per

interface.

38. Avoid events as interface members.

39. Avoid abstract methods; use interfaces instead.

40. Expose interfaces on class hierarchies.

41. Prefer using explicit interface implementation.

42. When building a long string, use StringBuilder, not string.

43. Avoid providing methods on structures.

44. Always provide a static constructor when providing static member variables.

45. Walk through every line of code in a “white box” testing manner.

46. Avoid code that relies on an assembly running from a particular location.

47. Do not use late-binding invocation when early-binding is possible.

48. Avoid using the trinary conditional operator.

49. Do not use the Me reference unless invoking another constructor from within a

constructor.

50. Use application logging and tracing.

51. Do not use the MyBase word to access base class members, except when resolving a

conflict with a subclasses member of the same name or when invoking a base class

constructor.

52. Implement Dispose() and Finalize() methods based on the template provided by

Microsoft.

53. Avoid casting to and from System.Object in code that uses generics.

9.2 Database Coding Standards

9.2.1 Coding Standards

The naming conventions for database management (DBMS) objects are similar to the SQL

naming standards. Specifically, object names:

 Are not case-sensitive.

 Are to be unique and not the name of another object.

Detailed Technical Specifications Document MPSC WIC Data System Project

60 Standards Final – March 24, 2008

 Are to be stated in the singular.

 Do not use DBMS or ANSI reserved words.

 State what the object is as a descriptive phrase or sentence.

Names should be unique, meaningful, clearly understood, and not synonyms, homonyms, or

uncommon abbreviations. To avoid confusion, assign names that make it absolutely clear

which kind of thing the user is dealing with. The exact meaning and interpretation of the

defined object should be apparent from the name. A name should be clear enough to allow

only one possible interpretation. Here is an example of a set of naming standards for tables

and columns:

1. The complete entity has a simple type name reflecting the real-world object, e.g.

city, company, course.

2. The corresponding external name appends name or title to the entity type name,

e.g. city_name, company_name, course_title.

3. The corresponding internal identifier appends “id” or “code” to the entity type

name, e.g. state_code, course_id. Alternatively where an industry standard

name is in common use, it can be substituted, e.g. ISBN instead of book_id.

Table Names

Table names should describe the entity the table represents using complete English

words. Names can use commonly recognized abbreviations only if the abbreviations

are known agency wide. Helpful guidelines for naming a table are:

 Use an upper case letter to mark the beginning of a new word followed by lower

case letters, e.g. PatientHistory instead of Patienthistory.

 Use full, descriptive, pronounceable names and avoid the use of abbreviations,

e.g. Employee instead of Empl.

 Make the name singular, not plural, e.g. Book instead of Books.

 Do not use quotation marks, underscores, or spaces.

 Avoid the use of $ and #.

 Do not use a prefix in front of the name e.g. TblAgency.

 Avoid embedding specialized meaning into the name.

Column Names

Column names should describe the field they represent as precisely as possible. As

with tables, column names should be complete English words. Abbreviated names

should be avoided but can be used when their meanings are understood by all

agency personnel. If abbreviations are used, the name should be as consistent as

possible with the abbreviations used across the DBMS. Guidelines for naming

columns are:

 Use lower case in the word, e.g. FreightCostAmount instead of

FREIGHTCOSTAMOUNT.

 Use Pascal Case to separate words, e.g. MiddleInitial instead of middleinitial.

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Standards 61

 Fully spell out the English word as much as possible, e.g. FirstName instead of

FName.

 Use the same column names to describe the same things across tables.

 Do not use a prefix in front of the name or a suffix at the end of the name, e.g.

txt_last_name.

 Be descriptive and avoid the use of synonyms, e.g. AgentName instead of

Representative.

 Include the abbreviation „dt‟ in the name when the data contains a date.

 Avoid the use of $ and #.

Index and Constraint Names

Index names in the database begin with a prefix indicating the type of constraint

followed by the name of the table on which they are placed. For a primary key, the

prefix is „PK‟. All other indexes use the „IDX‟ prefix, followed by a numeric sequence.

Examples of indexes are:

 PK_Employee_PK

 IDX1_Employee_IDX1

 IDX2_Employee_IDX2

Constraint names have three parts to them. The first part is the prefix „FK‟, then an

underscore followed by the child‟s table name, then an underscore followed by the

parent‟s table name. An example of a constraint name is:

 FK_Employee_Department

View Names

A view should describe the entity the view represents, such as the primary table

name, plus the reason for the view, such as finding all the locations for an agency.

Complete English words are to be used or commonly recognized abbreviations, if

necessary. Use an upper case letter to mark the beginning of a new word followed

by lower case letters. Underscores are used to separate the words. An example of a

view name is:

 Agency_Lookup

Trigger Names

A trigger name should clearly indicate the table it applies to, the before or after

status, the DML commands that trigger it, and whether it is a row-level or

statement-level trigger. In general, the trigger name should include as much of the

table name as possible. Underscores are used to separate the words.

Since a trigger name should not exceed 30 characters in length, a standard set of

abbreviations is necessary when naming triggers. Abbreviations for the DML

commands are „I‟ for Insert, „U‟ for Update‟, and „D‟ for Delete. Abbreviations for the

before/after status are „B‟ for Before and „A‟ for After. To indicate a row-level

Detailed Technical Specifications Document MPSC WIC Data System Project

62 Standards Final – March 24, 2008

trigger, use the abbreviation „ROW‟. For a statement-level trigger, use the

abbreviation „STMT‟. Listed below are examples of trigger names:

 Employee_BI_Row – Table Employee Before Insert by Row

 Employee_AI_Row – Table Employee After Insert by Row

 Employee_BU_STMT – Table Employee Before Update by Statement

 Employee_AU_STMT – Table Employee After Update by Statement

 Employee_BD_Row – Table Employee Before Delete by Row

 Employee_AD_STMT – Table Employee After Delete by Statement

 Employee_BUI_Row – Table Employee Before Update Insert by Row

 Employee_BUID_STMT – Table Employee Before Update Insert Delete by

Statement

 Employee_AIU_Row – Table Employee After Insert Update by Row

 Employee_AIUD_STMT – Table Employee After Insert Update Delete by

Statement

Package, Function, and Procedure Names

Packages, functions, and procedures should be named according to the business

function they perform or the business rule they enforced. There should be no

ambiguity about their purpose. A verb must describe what it does, like the verb

„Add‟. The name should also include the name of the major table(s) it impacts. If

the tables are properly named, then the name of the table should be the direct

object upon which the verb acts. In addition, the name should be suffixed with an

indicator of what type of program object it is.

Complete English words are to be used or commonly recognized abbreviations, if

necessary. Use an upper case letter to mark the beginning of a new word followed

by lower case letters. Underscores are used to separate the words. Here are

examples of names for functions, and procedures:

 Get_Class_Code_FUNC

 Update_Client

User Roles Names

User role names should include a word describing the amount or type of privilege,

the schema name the role is used in, and the suffix „ROLE‟. Complete English words

are to be used or commonly recognized abbreviations, if necessary. Use an upper

case letter to mark the beginning of a new word followed by lower case letters.

Underscores are used to separate the English words. Examples of role names are:

 Full_Priviledge_ORYX_ROLE

 Read_All_CMHIFL_ROLE

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Standards 63

9.2.2 Guidelines

1. If possible, try to keep object names within a 30 byte limit.

2. Try not to use system tables directly. System table structures may change in a

future release. Wherever possible, use the sp_help* stored procedures or

INFORMATION_SCHEMA views. However, there will be situations in which accessing

system tables is unavoidable.

3. Make sure to normalize data at least until 3rd normal form. At the same time, do

not compromise on query performance. A little bit of denormalization helps queries

perform faster.

4. Write comments in stored procedures, triggers, and SQL batches generously. This

helps other programmers understand the code clearly. The length of the comments

does not impact the performance.

5. Do not use SELECT * in queries. Always write the required column names after the

SELECT statement, like SELECT CustomerID, CustomerFirstName, City. This

technique results in less disk IO and less network traffic, and hence, better

performance.

6. Try to avoid server-side cursors as much as possible. Always stick to 'set based

approach' instead of a 'procedural approach' for accessing/manipulating data.

Cursors can be easily avoided by SELECT statements in many cases. If a cursor is

unavoidable, use a simple WHILE loop to loop through the table. A WHILE loop is

faster than a cursor most of the time. But for a WHILE loop to replace a cursor, a

column (primary key or unique key) is needed to identify each row uniquely. Every

table must have a primary or unique key.

7. Avoid the creation of temporary tables while processing data, as much as possible,

as creating a temporary table means more disk IO. Consider advanced SQL or views

or table variables of SQL Server or derived tables instead of temporary tables. Keep

in mind that, in some cases, using a temporary table performs better than a highly

complicated query.

8. Try to avoid wildcard characters at the beginning of a word while searching using the

LIKE keyword, as that results in an index scan, which is defeating the purpose of

having an index. The following statement results in an index scan, while the second

statement results in an index seek:

 SELECT LocationID FROM Locations WHERE Specialties LIKE '%pples'

 SELECT LocationID FROM Locations WHERE Specialties LIKE 'A%s'

Also avoid searching with not equals operators (<> and NOT) as they result in table

and index scans. If heavy text-based searches are necessary, consider using the

Full-Text search feature of SQL Server for better performance.

9. While designing a database, design it keeping 'performance' in mind. Tuning

performance later, when the database is in production, is not possible as it involves

rebuilding tables/indexes, re-writing queries. Use the graphical execution plan in

Query Analyzer or SHOWPLAN_TEXT or SHOWPLAN_ALL commands to analyze

queries. Make sure queries do 'Index seeks' instead of 'Index scans' or 'Table scans'.

A table scan or an index scan should be avoided where possible. (Sometimes when

the table is too small or when the whole table needs to be processed, the optimizer

will choose a table or index scan.)

Detailed Technical Specifications Document MPSC WIC Data System Project

64 Standards Final – March 24, 2008

10. Use SET NOCOUNT ON at the beginning of SQL batches, stored procedures, and

triggers in production environments, as this suppresses messages like '(1 row(s)

affected)' after executing INSERT, UPDATE, DELETE and SELECT statements. This in

turn improves the performance of the stored procedures by reducing the network

traffic.

11. Do not prefix stored procedure names with 'sp_'. The prefix sp_ is reserved for

system stored procedure that ship with SQL Server. Whenever SQL Server

encounters a procedure name starting with sp_, it first tries to locate the procedure

in the master database. Save time in locating the stored procedure by avoiding sp_

prefix. However, there is one exception. While creating general purpose stored

procedures that are called from all databases, prefix those stored procedure names

with sp_ and create them in the master database.

12. Views are generally used to show specific data to specific users based on their

interest. Views are also used to restrict access to the base tables by granting

permission on only views. Yet another significant use of views is that they simplify

queries. Incorporate frequently required complicated joins and calculations into a

view to avoid repeating those joins/calculations in all queries. Instead just select

from the view.

13. Use 'User Defined Data types', if a particular column repeats in a lot of tables, so

that the data type of that column is consistent across all tables.

14. Do not let front-end applications query/manipulate the data directly using SELECT or

INSERT/UPDATE/DELETE statements. Instead, create stored procedures, and let

applications access these stored procedures. This keeps the data access clean and

consistent across all the modules of the application, at the same time centralizing the

business logic within the database.

15. Use char data type for a column only when the column is non-nullable. If a char

column is nullable, it is treated as a fixed length column in SQL Server. So, a

char(100), when NULL, will eat up 100 bytes, resulting in space wastage. So, use

varchar(100) in this situation. Of course, variable length columns do have a very

little processing overhead over fixed length columns. Carefully choose between char

and varchar depending upon the length of the data being stored.

16. Avoid dynamic SQL statements as much as possible. Dynamic SQL tends to be

slower than static SQL, as SQL Server must generate an execution plan every time

at runtime. IF and CASE statements come in handy to avoid dynamic SQL. Another

major disadvantage of using dynamic SQL is that it requires the users to have direct

access permissions on all accessed objects like tables and views. Generally, users

are given access to the stored procedures which reference the tables, but not directly

on the tables. In this case, dynamic SQL will not work. Consider the following

scenario, where a user named 'dSQLuser' is added to the pubs database and is

granted access to a procedure named 'dSQLproc', but not on any other tables in the

pubs database. The procedure dSQLproc executes a direct SELECT on titles table

that works. The second statement runs the same SELECT on titles table using

dynamic SQL, and it fails with the following error:

Server: Msg 229, Level 14, State 5, Line 1

SELECT permission denied on object 'titles', database 'pubs', owner 'dbo'.

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Standards 65

To reproduce the above problem, use the following commands:

sp_addlogin 'dSQLuser'

GO

sp_defaultdb 'dSQLuser', 'pubs'

USE pubs

GO

sp_adduser 'dSQLUser', 'dSQLUser'

GO

CREATE PROC dSQLProc

AS

BEGIN

SELECT * FROM titles WHERE title_id = 'BU1032' --This works

DECLARE @str CHAR(100)

SET @str = 'SELECT * FROM titles WHERE title_id = ''BU1032'''

EXEC (@str) --This fails

END

GO

GRANT EXEC ON dSQLProc TO dSQLuser

GO

Now login to the pubs database using the login dSQLuser and execute the procedure

dSQLproc to see the problem.

17. Consider the following drawbacks before using IDENTITY property for generating

primary keys. IDENTITY is very much SQL Server specific and causes problems if it

is necessary to support different database backends for the application. IDENTITY

columns have other inherent problems. IDENTITY columns run out of numbers

eventually. Numbers cannot be reused automatically after deleting rows.

Replication and IDENTITY columns do not always get along well. Instead of

IDENTITY columns, use the UNIQUEIDENTIFIER type for primary key columns.

18. Use Unicode data types like nchar, nvarchar, ntext if the database is going to store

not just plain English characters, but a variety of characters used all over the world.

Use these data types only when they are absolutely needed as they need twice as

much space as non-unicode data types.

19. Always use a column list in INSERT statements. This helps in avoiding problems

when the table structure changes (like adding a column).

20. Perform all referential integrity checks and data validations using constraints (foreign

key and check constraints). These constraints are faster than triggers. Use triggers

only for auditing, custom tasks, and validations that cannot be performed using

these constraints. These constraints save time as well, as it is not necessary to write

code for these validations and the RDBMS will do all the work.

Detailed Technical Specifications Document MPSC WIC Data System Project

66 Standards Final – March 24, 2008

21. Always access tables in the same order in all stored procedures/triggers consistently.

This helps in avoiding deadlocks. Other things to keep in mind to avoid deadlocks

are:

 Keep transactions as short as possible.

 Touch as little data as possible during a transaction.

 Never wait for user input in the middle of a transaction.

 Do not use higher level locking hints or restrictive isolation levels unless they

are absolutely needed.

 Make front-end applications deadlock-intelligent. That is, these applications

should be able to resubmit the transaction in case the previous transaction

fails with error 1205.

 In applications, process all the results returned by SQL Server immediately so

that the locks on the processed rows are released, hence no blocking.

22. Consider adding a @Debug parameter to stored procedures. This can be of bit data

type. When a 1 is passed for this parameter, print all the intermediate results and

variable contents using SELECT or PRINT statements and when 0 is passed, do not

print debug information. This helps in quick debugging of stored procedures, as it is

not necessary to add and remove these PRINT/SELECT statements before and after

troubleshooting problems.

23. Do not call functions repeatedly within stored procedures, triggers, functions and

batches. For example, it might be necessary to find the length of a string variable in

many places of a procedure, but don't call the LEN function whenever it is needed.

Instead, call the LEN function once, and store the result in a variable for later use.

24. Make sure stored procedures always return a value indicating the status.

Standardize on the return values of stored procedures for success and failures. The

RETURN statement is meant for returning the execution status only, but not data. If

it is necessary to return data, use OUTPUT parameters.

25. Always check the global variable @@ERROR immediately after executing a data

manipulation statement (like INSERT/UPDATE/DELETE, unless using ADO or ADO.Net

to control the transaction boundaries), so that the transaction can be rolled back in

case of an error (@@ERROR will be greater than 0 in case of an error). This is

important, because by default, SQL Server will not rollback all the previous changes

within a transaction if a particular statement fails. This behavior can be changed by

executing SET XACT_ABORT ON. The @@ROWCOUNT variable also plays an

important role in determining how many rows were affected by a previous data

manipulation (also, retrieval) statement. Based on that, choose to commit or

rollback a particular transaction.

26. Always store 4-digit years in dates (especially, when using char or int data type

columns) instead of 2-digit years to avoid any confusion and problems. This is not a

problem with datetime columns, as the century is stored even if a 2-digit year is

specified. But it is always a good practice to specify 4-digit years even with datetime

data type columns.

27. As is true with any other programming language, do not use GOTO or use it

sparingly. Excessive usage of GOTO can lead to hard-to-read-and-understand code.

28. Do not forget to enforce unique constraints on alternate keys.

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Standards 67

29. Always be consistent with the usage of case in code. On a case insensitive server,

code might work fine, but it will fail on a case sensitive SQL Server if the code is not

consistent in case. For example, if there is a table in SQL Server or a database that

has a case-sensitive or binary sort order, all references to the table must use the

same case specified in the CREATE TABLE statement. If the table is named 'MyTable'

in the CREATE TABLE statement and 'mytable' is used in the SELECT statement, an

'object not found' or 'invalid object name' error occurs.

30. Though T-SQL has no concept of constants (like the ones in VB6 or VB.Net),

variables will serve the same purpose. Using variables instead of constant values

within SQL statements improves readability and maintainability of the code.

31. Do not use the column numbers in the ORDER BY clause as it impairs the readability

of the SQL statement. Further, changing the order of columns in the SELECT list has

no impact on the ORDER BY when the columns are referred to by names instead of

numbers. Consider the following example, in which the second query is more

readable than the first one:

SELECT OrderID, OrderDate

FROM Orders

ORDER BY 2

SELECT OrderID, OrderDate

FROM Orders

ORDER BY OrderDate

32. If it is necessary to store integer data from 0 through 255, use the TINYINT data

type. This data type uses only one byte to store its value, in comparison with two

bytes, four bytes and eight bytes used to store the columns with the SMALLINT, INT

and BIGINT data types, respectively.

33. If it is necessary to store integer data from –32,768 through 32,767, use the

SMALLINT data type

34. If it is necessary to store integer data from –2,147,483,648 through 2,147,483,647,

use the INT data type.

35. Use the SMALLMONEY data type instead of MONEY data type if it is necessary to

store monetary data values from -214,748.3648 through 214,748.3647.

36. Use the SMALLDATE data type instead of DATETIME data type if it is necessary to

store the date and time data from January 1, 1900 through June 6, 2079 with

accuracy to the minute.

9.2.3 Security

1. Never give users direct permissions to tables.

2. Assign specific roles to execute stored procedures in the database and then add

users to that role.

Detailed Technical Specifications Document MPSC WIC Data System Project

68 Standards Final – March 24, 2008

3. Always verify the usage of external stored procedures in the system, making sure

they do not require special logins or security privileges, which might make the

database server vulnerable

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix A: Data Dictionary and Data Models 69

10 Appendix A: Data Dictionary and Data Models

Accompanying this document are a number of supplemental files which contain detailed

information about the data structures of the database.

The Data Dictionary is an Excel file (08 DTSD Data Dictionary.xls) with two tabs. The

Tables tab lists all the tables in the database with a description and a mapping to the

primary functional area of the system which uses that table. The Columns tab lists all the

individual columns in the database by table and the details of each column (data type, nulls

allowed, key indicator, and description).

The Data Models are contained in sixteen Visio files which graphically describe all of the

areas of the MPSC database (delivered in a zip file, 08 DTSD Data Models.zip). For each

table depicted, the model includes the column names within the table. The data models are

split across multiple files in order to support printing in a readable fashion on paper no

larger than 11” x 17”. Each data model includes a legend that references the scope of the

model, the file name, and when it was last updated. The data models show the cardinality

of the relationships and the foreign keys to other tables in the database. If the other tables

are a part of that same data model, connection lines are also shown to depict the foreign

key relationships. The files comprising the MPSC data model are:

 CS 0 1 2 Intake Activity.vsd

 CS 3 4 5 Assessment.vsd

 CS 3c Interview and risk.vsd

 CS 6 Food Benefits.vsd

 FM 1 Food management.vsd

 FN 1 2.vsd

 OP 1 Staff.vsd

 OP 2 Inventory.vsd

 SA 1 System Wide.vsd

 SA 2 Clinic Services.vsd

 SA 3 Operations.vsd

 SC 0 1 Scheduler.vsd

 VM 0 1 2 Details Application.vsd

 VM 3 Oversight.vsd

 VM 4 5 6 Training Food Associations.vsd

 VM 7 8 Price Survey High Risk.vsd

Detailed Technical Specifications Document MPSC WIC Data System Project

70 Appendix B: Class Diagrams Final – March 24, 2008

11 Appendix B: Class Diagrams

The following class diagrams cover the MPSC business classes. Each diagram shows a

separate class with its respective fields and properties.

11.1 Base

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 71

11.2 Clinic Services

Detailed Technical Specifications Document MPSC WIC Data System Project

72 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 73

Detailed Technical Specifications Document MPSC WIC Data System Project

74 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 75

Detailed Technical Specifications Document MPSC WIC Data System Project

76 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 77

Detailed Technical Specifications Document MPSC WIC Data System Project

78 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 79

Detailed Technical Specifications Document MPSC WIC Data System Project

80 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 81

Detailed Technical Specifications Document MPSC WIC Data System Project

82 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 83

Detailed Technical Specifications Document MPSC WIC Data System Project

84 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 85

Detailed Technical Specifications Document MPSC WIC Data System Project

86 Appendix B: Class Diagrams Final – March 24, 2008

11.3 Finance

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 87

Detailed Technical Specifications Document MPSC WIC Data System Project

88 Appendix B: Class Diagrams Final – March 24, 2008

11.4 Food Management

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 89

Detailed Technical Specifications Document MPSC WIC Data System Project

90 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 91

Detailed Technical Specifications Document MPSC WIC Data System Project

92 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 93

Detailed Technical Specifications Document MPSC WIC Data System Project

94 Appendix B: Class Diagrams Final – March 24, 2008

11.5 Operations

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 95

Detailed Technical Specifications Document MPSC WIC Data System Project

96 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 97

Detailed Technical Specifications Document MPSC WIC Data System Project

98 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 99

Detailed Technical Specifications Document MPSC WIC Data System Project

100 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 101

Detailed Technical Specifications Document MPSC WIC Data System Project

102 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 103

Detailed Technical Specifications Document MPSC WIC Data System Project

104 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 105

11.6 SA – Clinic Services

Detailed Technical Specifications Document MPSC WIC Data System Project

106 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 107

Detailed Technical Specifications Document MPSC WIC Data System Project

108 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 109

Detailed Technical Specifications Document MPSC WIC Data System Project

110 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 111

Detailed Technical Specifications Document MPSC WIC Data System Project

112 Appendix B: Class Diagrams Final – March 24, 2008

11.7 SA – Operations

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 113

Detailed Technical Specifications Document MPSC WIC Data System Project

114 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 115

11.8 SA – Scheduler

Detailed Technical Specifications Document MPSC WIC Data System Project

116 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 117

11.9 SA – System Wide

Detailed Technical Specifications Document MPSC WIC Data System Project

118 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 119

Detailed Technical Specifications Document MPSC WIC Data System Project

120 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 121

Detailed Technical Specifications Document MPSC WIC Data System Project

122 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 123

Detailed Technical Specifications Document MPSC WIC Data System Project

124 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 125

11.10 SA – Vendor

Detailed Technical Specifications Document MPSC WIC Data System Project

126 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 127

11.11 Scheduler

Detailed Technical Specifications Document MPSC WIC Data System Project

128 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 129

11.12 Vendor Management

Detailed Technical Specifications Document MPSC WIC Data System Project

130 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 131

Detailed Technical Specifications Document MPSC WIC Data System Project

132 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 133

Detailed Technical Specifications Document MPSC WIC Data System Project

134 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 135

Detailed Technical Specifications Document MPSC WIC Data System Project

136 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 137

Detailed Technical Specifications Document MPSC WIC Data System Project

138 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 139

Detailed Technical Specifications Document MPSC WIC Data System Project

140 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 141

Detailed Technical Specifications Document MPSC WIC Data System Project

142 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 143

Detailed Technical Specifications Document MPSC WIC Data System Project

144 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 145

Detailed Technical Specifications Document MPSC WIC Data System Project

146 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 147

Detailed Technical Specifications Document MPSC WIC Data System Project

148 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 149

Detailed Technical Specifications Document MPSC WIC Data System Project

150 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 151

Detailed Technical Specifications Document MPSC WIC Data System Project

152 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 153

Detailed Technical Specifications Document MPSC WIC Data System Project

154 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 155

Detailed Technical Specifications Document MPSC WIC Data System Project

156 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 157

Detailed Technical Specifications Document MPSC WIC Data System Project

158 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 159

Detailed Technical Specifications Document MPSC WIC Data System Project

160 Appendix B: Class Diagrams Final – March 24, 2008

MPSC WIC Data System Project Detailed Technical Specifications Document

Final – March 24, 2008 Appendix B: Class Diagrams 161

Detailed Technical Specifications Document MPSC WIC Data System Project

162 Appendix B: Class Diagrams Final – March 24, 2008

